College of Graduate Studies

Mengjie Wang, Ph.D. Student – Special to The Blade | Early puberty can lead to health problems later in life

PUBLISHED ON Nov. 6, 2017

We all go through puberty, the period of time when children physically and emotionally develop into young adults. Puberty happens when a part of the brain called the hypothalamus tells the body to release male or female hormones. In response, height and weight increase, and male or female characteristics begin to develop.

Puberty is considered early if it occurs before a girl is 8 years old or a boy is 9 years old. Around the world, puberty is starting earlier than it once did. Today, about one in 5,000 children goes through early puberty. The known risks for these children can include childhood bullying for body changes, short adult height, and an increased risk of breast cancer.

A clearer understanding of all risks of early puberty is important to patients and physicians.

Mengjie Wang is a PhD graduate student at the University of Toledo College of Medicine and Life Sciences biomedical science program.

Central precocious puberty is a common type of early puberty that involves your hypothalamus. In most cases, we don’t yet know what causes this, but brain tumors, injury, or inflammation are some of the causes.

A child going through puberty needs enough energy to have normal development. An obese child actually provides more energy than the child needs for normal development. This extra energy sends incorrect signals to the hypothalamus for puberty to start. Obesity and early puberty are serious health issues in the United States.

I study how the hypothalamus part of your brain controls obesity, puberty, and reproduction in our lab at the University of Toledo College of Medicine and Life Sciences, formerly the Medical College of Ohio.

We overfed female mouse models by giving them high-fat- diets from the day they deliver their pups until weaning (21 days) to investigate the potential effects of obesity and overfeeding in breastfeeding mothers. Surprisingly, we found that overfeeding the mothers during breastfeeding can cause obesity in the pups and significantly advance the start of their puberty.

This is the first evidence showing that overfeeding during breastfeeding influences obesity and puberty in the offspring.

Does early puberty, caused by overfeeding, also cause other health problems? We did glucose (sugar) tolerance tests and insulin tolerance tests to determine if these pups would develop diabetes when they became adults at 3 months old. We measured blood glucose levels every 15 minutes after giving them a large dose of sugar. Surprisingly, we found that these overfed mice could not keep their glucose levels within normal range. After we gave them insulin, which usually lowers blood glucose, their blood glucose measure did not fall.

These results show that overfed mice from overfed mothers are glucose intolerant and insulin insensitive. This means that obese mice with early puberty also have increased risk of developing diabetes during adulthood.

We then performed a fertility test on the obese mice when they were 4 months old. This tests the adults’ ability to reproduce. Notably, these experiments showed that female mice have trouble getting pregnant and have fewer pups than normal. Therefore, our studies also show evidence that obesity-induced early puberty can also contribute to reproductive problems during adulthood.

Another important player in the effects of childhood obesity is something called Insulin-like growth factor-1 (IGF-1). This is a protein secreted from the liver that regulates body growth and puberty. The hypothalamus in your brain can sense changes in IGF-1 levels and provides feedback signals to regulate IGF-1. We know that there are specific cells in the hypothalamus, called leptin-responsive cells that have IGF-1 receptors. This means that these specific cells can receive signals from IGF-1.

We used research methods to delete the IGF- 1 receptors in those leptin-responsive cells in the hypothalamus and then we tested these mice. We discovered that loss of IGF-1 receptors in otherwise normal mice will cause decreased body weight, along with delayed puberty and reproductive problems. This is the first evidence that IGF-1 receptors in leptin-responsive cells in the brain is important to normal body weight, puberty, and reproduction.

Doctors don’t always follow the same patients from puberty to adult life. Therefore our findings can alert doctors and patients with early puberty that other health problems may arise after they become adults. Correct treatment and follow-up are both important for patients with early puberty.

Mengjie Wang is a PhD graduate student at the University of Toledo College of Medicine and Life Sciences biomedical science program. She is completing her doctoral studies in the Molecular Medicine track in the lab of Jennifer Hill. For details, email or go to​med/​grad/​biomedical.

Medical advances to seek blood test for determining cancer risk

PUBLISHED ON Oct. 1, 2017

Cancer is one of the deadliest human diseases and will affect almost 40 percent of men and women at some point in their lives. While each type of cancer is different, they all share one common theme: They start from a single cell and develop the ability to divide uncontrollably. Determining our risk for getting cancer is complicated because there are many factors, both inherited and environmental, that play a role.

By understanding our own genetics, it may be possible to identify people at greatest risk, allowing us to prevent or diagnose cancer early. As the rate of cancer rises around the world, wouldn’t it be useful to know if you were at greater risk based on your own genetic profile?

The human genome serves as your genetic playbook and contains about 20,000 genes composed of DNA building blocks strung together just like letters to form words. Each cell in your body activates different genes in this playbook to carry out specific functions. Throughout life, your cells are exposed to things that can cause damage to these genes, such as ultraviolet rays from the sun, environmental and household chemicals, and even natural processes associated with aging. Left uncorrected, this damage can lead to permanent changes in these genes called mutations.

Luckily, we have a variety of DNA repair and tumor prevention genes that work together to monitor the genome for damage and stop uncontrolled cell growth. Proteins produced by these genes serve as safeguards to ensure that cells with damaged DNA do not divide. Despite these protective safeguards, some DNA damage is left uncorrected, leading to mutations. While most mutations are harmless or cause a cell to die, some may occur in genes that control cell division. If a cell collects enough mutations in these critical genes, that cell may begin to divide more than normal, resulting in cancer.

Our cells may gain mutations either by inheriting them from our parents, or by collecting them throughout life.

Daniel J. Craig

The inherited mutations are present in every cell and only a few may affect risk for cancer. The mutations that we collect over time occur only in certain cells because of unrepaired DNA damage. The vast majority of human cancers are caused by a lifetime of collected mutations, which is why most cancers occur later in life.

While some inherited mutations can contribute to the risk of cancer if present in a cancer-related gene, additional mutations must also occur in a cell to overcome our genetic safeguards.

If a single cell collects multiple mutations that destroy these safeguards, that cell will divide more than it should. We recognize it as a cancer when it produces so many offspring that it interferes with the function of other cells and distorts the tissue around it.

Lung cancer is the deadliest type of cancer in the United States, killing almost 160,000 people each year — more than the next three deadliest cancers combined (breast, colon, and prostate), and about 20 percent of lung cancer cases occur in non-smokers. Early diagnosis is important because it gives doctors the chance to treat the disease when it is curable. For example, among lung cancers that are diagnosed through screening, 85 percent are in an early stage and can be cured with surgery. Without screening, the majority are in late stage and cannot be cured.

The research in our lab is focused on developing tests to diagnose cancer as early as possible and to identify people who may be at increased risk later in life because of a combination of factors.

My research focuses on developing a blood test that allows us to identify both the mutations that we inherit and those that we collect over our lifetime. Our idea is simple: If a person collects mutations at an unusually rapid rate, he or she likely does not repair DNA very well, and there is a higher likelihood of mutations in critical safeguard genes. This leads to an elevated risk for developing cancer.

This information is important because it allows us to look at inherited and environmental factors that contribute to cancer at the same time in a simple blood test. Identifying at-risk individuals before they develop cancer would allow doctors to create, and insurance companies to justify, a personalized screening plan to catch a potential cancer in its earliest stage when it is most treatable. This would not only save lives, but also save tremendously in healthcare spending.

Our research team works closely with researchers and pulmonary physicians at the University of Toledo, the Toledo Hospital, the University of Michigan, Vanderbilt University, Cleveland Clinic, the National Cancer Institute, and many other centers of excellence in lung cancer research. We are grateful for the support received from the National Institutes of Health and the George Isaac Cancer Research Fund.

Daniel J. Craig is a student studying for his PhD in the University of Toledo College of Medicine and Life Sciences Biomedical Science Program, formerly the Medical College of Ohio. Mr. Craig is doing his research in the laboratory of Dr. James C. Willey in the department of medicine. For more information, contact or go to med/ grad/ biomedical.


Advances in the Study of Brain’s Link to Metabolic Syndrome


High blood pressure, high blood sugar, and overweight. Do these conditions scare you? Then the term “metabolic syndrome” should be a full-blown nightmare to you, because this is a combination of all these conditions within the same person. Even worse, metabolic syndrome often leads to heart disease, diabetes, and infertility.

In the United States, about 600,000 people die from heart disease every year, 26 million people have diabetes and 8 million people suffer from infertility. According to the American Diabetes Association, more than 200,000 new cases of Type 2 diabetes are diagnosed every year and many of these diabetic patients also have obesity and infertility issues. These combined illnesses have become known as the metabolic syndrome.

Insulin plays a major role in regulating both diabetes and infertility. Insulin is a molecule released by your pancreas into your blood stream when your blood sugar is high, for example, after you eat a big meal. Insulin directs the excess sugar in your blood to organs such as your liver, muscle, and fat cells to provide your body with stored energy.

We now know that more than 25 percent of men with Type 2 diabetes also have problems with infertility. Because of the increasing number of patients being treated for both infertility and diabetes, there is intense interest in developing less expensive, combined therapy for these conditions.

Iyad Manaserh is a PhD student in the department of physiology and pharmacology at the University of Toledo College of Medicine and Life Sciences Biomedical Science Program.

At the University of Toledo College of Medicine, formerly the Medical College of Ohio, our research team is focused on the brain because we believe that it is the master regulator of the metabolic syndromes.

Why the brain? What is the connection between the brain and insulin levels in your blood?

We know that specific areas in your brain control how much you eat and how your body responds to high blood sugar. Therefore, our research team is testing the idea that insulin also acts in the brain to regulate metabolic syndrome and related problems such as infertility.

Your brain has multiple regions that control diabetes, obesity, and infertility. One of these regions in the brain is called the hypothalamus, and is further divided into many important subregions. Your brain also contains two types of cells; neurons to communicate messages across the brain and glial cells, whose function has been a mystery until recently.

My research uses a mouse model to study how insulin actions in the brain affect diabetes and infertility. My first experimental step was to delete insulin receptors from specific brain glial cells called astrocytes, which become activated when insulin binds to their receptors. I wanted to know what would happen when insulin could no longer activate the astrocytes. I discovered that astrocytes without insulin receptors affect fertility, diabetes, and obesity.

My research project is to investigate insulin signaling in the brain and its effect on reproduction (fertility) and metabolism (diabetes). When I studied fertility in this mouse model, I saw a delay in onset of puberty in the sick mouse model without insulin receptors, when compared to control healthy mice. Also, the sick female mice did not have regular menstrual cycles. I also observed a reduction in brain fertility hormone levels as well as ovary and testis hormone levels in the sick mice. I also found that pregnancy rate for the sick female mouse model was reduced dramatically when compared to that of healthy mice. I found similar results of decreased fertility in the sick male mouse model when compared to healthy mice. All of these findings indicate that insulin activity in brain cells affects fertility in important ways.

When I studied diabetes and obesity in this mouse model, as we had suspected, there were profound effects. The sick mouse model showed an increase in body weight from the first month and become outright obese by 6 months of age (equal to a 35-40 year old human).

This was the first hint that the sick mouse model would eventually become diabetic. Indeed, the sick mouse model is also prediabetic at an early age and becomes diabetic by 6 months of age. I also checked overall fat and muscle content in the sick mouse model and, as expected, I measured increased fat and low muscle content, also confirming obesity in the sick mouse model.

These combined findings indicate that insulin in the brain is critical in treating obesity, diabetes, and infertility. We are planning to use these results to help identify new drugs that will target these conditions simultaneously thereby lowering the cost of using of multiple drugs.

Iyad Manaserh is a PhD student in the department of physiology and pharmacology at the University of Toledo College of Medicine and Life Sciences Biomedical Science Program. Mr. Iyad is doing his research in the laboratory of Jennifer Hill. For more information, contact

New Teaching Assistant Training – August 24, 2017

Attention new Fall 2017 Teaching Assistants. For detailed agenda, please Click Here.

BIG FISH: Jessica Sherman Collier, grad student, Finalist for National Fellowship Sea Grant [VIDEO]

A University of Toledo graduate student in biology who has been working to restore giant, ancient sturgeon to Lake Erie was recently selected as one of 61 finalists across the country by Sea Grant for the 2018 Knauss Fellowship.

As a finalist, Jessica Sherman Collier, PhD student researcher in UT’s Department of Environmental Sciences, will spend a year working in Washington, D.C., on water resource policy.

“I am very excited and quite honored to be selected for this fellowship,” said Sherman Collier, who was recommended to Sea Grant by her PhD adviser Dr. Jonathan Bossenbroek. “The Knauss Fellowship is an amazing opportunity, and I am so happy to represent The University of Toledo and the Great Lakes region while I am there.”

Sherman Collier will spend a week in November interviewing with up to 20 different federal agency and legislative offices, such as the National Oceanic and Atmospheric Administration, Department of Interior, National Science Foundation, U.S. Navy, and the Senate Committee on Commerce, Science and Transportation. After being matched with her fellowship placement, her work will begin in February.

“This is a great launch to Jessica’s career, and I hope she finds satisfaction doing work as a public servant for the betterment of our environment,” said Dr. Tim Fisher, geology professor, chair of the UT Department of Environmental Sciences, and interim director of the Lake Erie Center.

“We are excited about the talent and perspectives the 2018 Knauss Fellowship finalists will bring to their executive and legislative appointments next year,” Jonathan Pennock, director of the National Sea Grant College Program, said. “The Knauss Fellowship is a special program for Sea Grant, and we are proud of the professional development and opportunities Sea Grant has provided our alumni, the current class and now these finalists.”

Knauss finalists are chosen through a competitive process that includes several rounds of review.

Since 1979, Sea Grant has provided more than 1,200 early-career professionals with firsthand experiences transferring science to policy and management through one-year appointments with federal government offices in Washington, D.C.

Sherman Collier, who also is president of the North American Sturgeon and Paddlefish Society Student Subunit, has been involved in the project to restore lake sturgeon to Lake Erie. Most recently, she helped the Toledo Zoo secure $90,000 in federal grant money to build a sturgeon rearing facility along the Maumee River, which flows into Lake Erie. Sherman Collier assisted the project by verifying that spawning and nursery habitat still ex

ist in the Maumee River to sustain a population of the fish that can live to be 150 years old and grow up to 300 pounds and eight feet long.

“I have enjoyed working with partners at the zoo, as well as state and federal agencies to give these large and ancient fish a chance to thrive in Lake Erie once again,” Sherman Collier said. “This is an instance when scientists and natural resource managers have the opportunity to improve the state of an ecosystem by restoring a species that belongs there and to learn a good lesson about our actions in the past.”

BIG FISH:  Jessica Sherman Collier, grad student Finalist for national fellowship Sea grant

Thomas Lai, graduate student, awarded Spitzer Fellowship in astronomy

“As a teenager, gazing at the stars on the dark canvas of the sky was like entering the most luxurious cinema,” reminisced Thomas Lai, a graduate student studying astronomy. “Soon I picked up the habit of staying in the dark whenever I could, and to recognize as many constellations as possible during my high school years.

“In retrospect, I can see this as a sparkle of the beginning of my interest in the enigmatic cosmos.”

Lai’s passion and hard work were recognized by the Department of Physics and Astronomy: He recently received the Doreen and Lyman Spitzer Graduate Fellowship.
The fellowship is named after Toledo natives. Lyman Spitzer was a world-renowned physicist and astronomer, who was an early proponent of a project that became the Hubble Space Telescope. The Spitzer Space Telescope, launched in 2003, is named after the scientist. Doreen Spitzer was a prominent archaeologist who had an affinity for all things Greek.

Lai, with assistance from Dr. Adolf Witt, Distinguished University Professor Emeritus of Astronomy, and Dr. JD Smith, associate professor of astronomy, was able to publish a study on light emissions from nebulae in the Cassiopeia constellation.

“I was extremely pleased that we were able to offer the Spitzer Fellowship to Thomas. He was clearly qualified; he was eager to start an independent research project during his first year as a graduate student at UT, which the Spitzer Fellowship made possible,” Witt said. “The data for this project had been secured beforehand by my collaborator, Ken Crawford, and myself. This allowed Thomas to enter right at the data calibration, reduction and analysis stage of the project — the phase where scientific results and conclusions are being extracted from a collection of images and numbers.

“I enjoyed working with Thomas. The fact that the project resulted in a peer-reviewed scientific paper in a major journal within about two years speaks for itself.”

“They showed me not only the method in conducting research, but also the right attitude in finding the reasonable answer,” said Lai, regarding the aid he received from Witt and Smith.

On the results of his study, Lai said, “I am particularly interested in extended red emission, because we understood little about the exact emission process and the carrier involved in producing such light, even though it has been studied for more than 40 years. To summarize this study, we attributed the extended red emission to a fluorescent process, namely the recurrent fluorescence, which enables small and fragile particles in interstellar space to dissipate their energy efficiently after being bombarded by high-energy photons originating in an illuminating star. This mechanism prevents particles from getting destroyed in the harsh environment filled with ultraviolet radiation from stars, and it may be a crucial process for increasing the survival rate of small carbonaceous molecules, which might be the building blocks of life.”

Though great progress has been made, Witt pointed out the work of a scientist is never finished: “It is an important part of the research experience that every successfully completed project should lead to new questions, which then demand follow-up studies. This has been the case with our work as well. A new question has emerged from some of our current findings, the solution to which we are pursuing through observations with the 4.3-meter Discovery Channel Telescope in Arizona and the 10-meter Keck II telescope on Mauna Kea, Hawaii. This will most likely be part of Thomas’s PhD thesis.”

Luckily, Lai’s passion for this field will surely lead to many more years of scientific discovery.

“Having this paper published means a lot to my career in astronomy,” Lai said. “It encourages me to find more intriguing phenomena provided by the universe and to reveal those profound facts hidden by wonders of the nature.”

Teaching Assistant (TA) Training Save-The-Date

Attention new Fall 2017 Teaching Assistants – TA training scheduled for Thursday, August 24th, 8:30-noon, Wolfe Hall Room 1201. More details to follow – Click Here.

Congratulations, Dr. Greg Guzman – Vice President of Institutional Advancement at Winebrenner Theological Seminary in Findlay, Ohio.

Congratulations, Dr. Greg Guzman, a recent graduate of our Higher Education Doctoral program, who has accepted a position as the Vice President of Institutional Advancement at Winebrenner Theological Seminary in Findlay, Ohio.

Dr. Greg Guzman

Click Here to view the Press Release

July Reminders from the Graduate College

As the summer semester is drawing to a close, we want to remind those of you graduating we are here to help you make the process as smooth as possible. Please take a look at the GRADUATION section below for important information, deadlines, and links to ensure a successful finish to your academic career. If you are continuing your studies with us, please take note of upcoming workshops, events, and academic planning timelines to keep you on track and involved in what is relevant to your interests as a graduate student. Don’t miss out on the upcoming LinkedIn workshops next week, July 11th! Click Here to Register.

If you are already following us on Facebook or Twitter, you may have noticed an increase in the number and frequency of posts. That is not by accident! We are striving to provide relevant, up-to-the-minute content that you can use, whether as a current graduate student, faculty, or even alumni. Follow us on social media!

 College of Graduate Studies Current Students
MyUT Portal Graduate Tab

419.530.GRAD (4723)


Graduation Application


The graduation application deadline was May 26th, but it is not too late to apply to graduate in the summer! Please submit your application through the MyUT portal. Remember, you have to be registered for a minimum of one graduate credit hour in the semester in which you plan on graduating. The last day applications will be accepted is Friday, August 4, 2017.


It’s not too early to apply if you are planning for a Fall 2017 graduation (Deadline: September 22nd)! Please submit your application through the MyUt portal. Remember, you have to be registered for a minimum of one graduate credit hour in the semester in which you plan on graduating.

Planning Information

Check out our newly updated Graduation Overview webpage for all information regarding graduation, commencement, diplomas, transcripts, fees, and more.

Degree Audits

Our office is working on getting out the summer degree audits, which will be sent to your UTAD email account, but you can print off one of our newly revised Graduation Completion Checklists to keep yourself on track in the meantime.

University Commencement Ceremony

Summer and Fall 2017 Commencement is on Sunday, December 17, 2017 at 10:00 am at the John F. Savage Arena – Main Campus. For all details please visit the registrar’s commencement webpage.

College Honors  & Convocations

Many of the 13 UT Colleges will hold their own convocation. A list of college honors convocations can be found on the university’s commencement ceremony webpage, which will be updated later this semester.

Questions and suggestions?

Elissa Falcone at    Colleges of: Arts & Letters, Business & Innovation, Education, Engineering, Health & Human Services, Law, Natural Sciences  & Mathematics

Teri Green at Colleges of: Medicine,  Nursing, Pharmacy


For students completing a thesis or dissertation and who plan on graduating in the Summer 2017 term, please carefully review the deadlines associated with the entire process, from applying to graduate to submitting your ETD to OhioLINK.  Resources for formatting, intellectual property concerns, submission, publication, and more are found on our website.

Deadlines  /    Start Here! Three Simple Steps    /    Document Preparation  /  ETD Submission

Final ETD Upload Deadline – Summer

Friday, August 4th by 11:59 pm to the OhioLINK ETD Center


ETD Open Labs: Formatting and Submission

This program provides one-on-one assistance with formatting issues and uploading your ETD to the OhioLINK ETD Center. This is not a lecture or presentation. Must bring own laptop for sessions on the Health Science Campus. Save your document to your laptop or H:drive or thumb drive. There will be one or two facilitators circulating to provide assistance. Please CLICK HERE TO REGISTER for the session(s) you wish to attend.

  • Tuesday, July 25 from 3 – 5 in MLB 129 (HSC)
  • Wednesday, July 26 from 3 – 5 in CL 1025 (MC)
  • Monday, July 31 from 3 – 5 in CL 1025 (MC)

Questions and suggestions?

Teri Green at


The Graduate College is pleased to present, sponsor, and collaborate with other offices to bring you programming in Academic Planning, Academic Enhancements, Career Development, Thesis and Dissertation Services, and Graduate Writing. Please take a few minutes to review the program descriptions and make sure to “Save the Date” on any you are interested in. Questions & suggestions? Contact Teri Green:         



Editing Your LinkedIn Profile

Did you know that LinkedIn completely changed their desktop platform in February? If you have not returned to your LinkedIn profile since you created it, or you are needing to take your profile to the next level, then this is the workshop for you! Our facilitator, Mary Jo Borden, M.Ed., from the College of Pharmacy & Pharmaceutical Sciences will be focused on assisting individuals update their LinkedIn profile to best suit their needs, with the primary focus being the development and/or improvement of the Profile Summary. She will be assisted by Teri Green of the College of Graduate Studies. Please bring your own laptop to participate in this workshop.  CLICK HERE TO REGISTER.

  • Tuesday, July 11, 2017 from NOON – 1:30 pm in Collier Building Room 1030 (Health Science Campus )
  • Tuesday, July 11, 2017 from 5:00 – 6:30 pm in the Field House Room 1700 (Main Campus)

Prior to the workshop:



Please visit for upcoming job fairs, career expos, and   pre-professional conferences. More events will be added throughout the year so check back often!


The GSA is an organization that represents the concerns of approximately 5,000 graduate students at the University of Toledo. The GSA sponsors many programs and provides funding to subsidize conference and symposium travel. Additionally, the GSA serves on numerous university-wide committees and organizes social events to help students develop contacts both on and off campus. Please visit the GSA website for updated information on meetings, events, programs, and funding.

GSA Executive Officers / GSA College Representatives / Meeting Schedule / Contact & Calendar


New Students

To ensure an accurate degree audit and fulfillment of your graduation requirements, you need to submit a complete Plan of Study for your degree—Doctoral, Masters, or Certificate—to the Graduate College office by the end of your first term or completion of 12 graduate credit hours.

  • If you are not a new student and have not yet completed a Plan of Study, please consult your adviser and do so immediately

Students Completing a Dissertation, Thesis, Scholarly Project, or Field Experience

To monitor and record timely compliance with the Office of Research and Sponsored Programs, we require the submission of the Graduate Research and Advisory Committee Approval & Assurances form prior to beginning any research and as soon as a committee has been formed. Known as the GRAD form, it addresses types of research and approvals obtained, timing of publication, and committee formation.

  • If you are already conducting research and have not completed and submitted the GRAD form, please consult with your PI or Committee Chair and do so immediately

GRAD Form Timelines

Dissertation: after the acceptance of the dissertation proposal and completion of didactic coursework

Thesis: at the end of the second semester or no later than the end of the third semester

Projects and Field Experiences: prior to conducting the actual research

Academic Program Forms

All forms required during the course of your degree journey are found on our Academic Program Forms page. These are the official forms produced by the College of Graduate Studies and also the most current. Please use the forms directly from our website. The forms are fillable PDFs and for accurate and timely processing, please type all information into the form before signing, and please obtain all required signatures before submitting to our office.


All new graduate students must fulfill the graduate orientation requirement. 2017 orientation includes a self-directed online orientation and three supplemental modules. We ask that all new degree-seeking graduate students complete the requirements by the end of the current semester. After completing the three modules, be sure to continue on and complete the remainder of the required online graduate orientation and submit the form at the end.

Resources for New Students   / Self-Directed Online Orientation and modules  / Questions? Email us


Blooming success – Sara Guiher, a graduate student in the Department of Environmental Sciences

Sara Guiher, a graduate student in the Department of Environmental Sciences, checked out the native plants at the roundabout at Dorr Street and Centennial Road. She is working with Dr. Todd Crail, associate lecturer of environmental sciences, and other students to ensure the flowering species native to the Oak Openings region continue to flourish in that roundabout as well as one at Dorr Street and King Road. The past two years, students planted predominantly herbaceous species that keep weeds at bay by taking up nutrients and space.