Global & Disaster Medicine

Archive for the ‘Chikungunya’ Category

Scientists have identified a molecule found on human cells and some animal cells that could be a useful target for drugs against chikungunya virus infection

NIH

“Scientists have identified a molecule found on human cells and some animal cells that could be a useful target for drugs against chikungunya virus infection and related diseases, according to new research published in the journal Nature. A team led by scientists at Washington University School of Medicine in St. Louis conducted the research, which was funded in part by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Countries with current or previous local transmission of chikungunya virus, listed in below data table

Chikungunya, an alphavirus, is transmitted to humans by the bite of an infected mosquito. Currently no specific treatment is available for chikungunya virus infection, which can cause fever and debilitating joint pain and arthritis. Small, sporadic outbreaks of chikungunya occurred in Africa, Asia, Europe, and the Indian and Pacific Oceans after the virus was identified in the 1950s. In 2013, the virus spread to the Americas and has since caused a widespread and ongoing epidemic.

In this study, scientists aimed to better understand which traits make humans susceptible to chikungunya virus infection. Using the gene-editing tool CRISPR-Cas9, they performed a genome-wide screen that identified the molecule Mxra8 as a key to the entry of chikungunya virus and related viruses into host cells. In the laboratory, scientists were able to reduce the ability of chikungunya virus to infect cells by editing the human and mouse genes that encode Mxra8. The researchers also administered anti-Mxra8 antibodies to mice and infected the mice with chikungunya virus or O’nyong-nyong virus, another alphavirus. The antibody-treated mice had significantly lower levels of virus infection and related foot swelling as compared with a control group.

These findings, along with future studies to better understand how chikungunya virus interacts with Mxra8, could help inform development of drugs to treat diseases caused by alphaviruses, according to the authors.

Article

R Zhang et al. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature DOI: 10.1038/s41586-018-0121-3 (2018).

Who

NIAID Director Anthony S. Fauci, M.D., is available for comment. Patricia M. Repik, Ph.D., program officer for Emerging Viral Diseases in the Virology Branch of NIAID’s Division of Microbiology and Infectious Diseases, is also available for comment.

Contact

To schedule interviews, please contact Jennifer Routh, (301) 402-1663, NIAIDNews@niaid.nih.gov (link sends e-mail).

This press release describes a basic research finding. Basic research increases our understanding of human behavior and biology, which is foundational to advancing new and better ways to prevent, diagnose, and treat disease. Science is an unpredictable and incremental process — each research advance builds on past discoveries, often in unexpected ways. Most clinical advances would not be possible without the knowledge of fundamental basic research.

NIAID conducts and supports research — at NIH, throughout the United States, and worldwide — to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID website.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIH…Turning Discovery Into Health®”

###


U.S. trends in occurrence of nationally reportable vectorborne diseases during 2004–2016.

CDC-MMWR

Rosenberg R, Lindsey NP, Fischer M, et al. Vital Signs: Trends in Reported Vectorborne Disease Cases — United States and Territories, 2004–2016. MMWR Morb Mortal Wkly Rep. ePub: 1 May 2018. DOI: http://dx.doi.org/10.15585/mmwr.mm6717e1.

Key Points

•A total of 642,602 cases of 16 diseases caused by bacteria, viruses, or parasites transmitted through the bites of mosquitoes, ticks, or fleas were reported to CDC during 2004–2016. Indications are that cases were substantially underreported.

•Tickborne diseases more than doubled in 13 years and were 77% of all vectorborne disease reports. Lyme disease accounted for 82% of all tickborne cases, but spotted fever rickettsioses, babesiosis, and anaplasmosis/ehrlichiosis cases also increased.

•Tickborne disease cases predominated in the eastern continental United States and areas along the Pacific coast. Mosquitoborne dengue, chikungunya, and Zika viruses were almost exclusively transmitted in Puerto Rico, American Samoa, and the U.S. Virgin Islands, where they were periodically epidemic. West Nile virus, also occasionally epidemic, was widely distributed in the continental United States, where it is the major mosquitoborne disease.

•During 2004–2016, nine vectorborne human diseases were reported for the first time from the United States and U.S. territories. The discovery or introduction of novel vectorborne agents will be a continuing threat.

•Vectorborne diseases have been difficult to prevent and control. A Food and Drug Administration–-approved vaccine is available only for yellow fever virus. Many of the vectorborne diseases, including Lyme disease and West Nile virus, have animal reservoirs. Insecticide resistance is widespread and increasing.

•Preventing and responding to vectorborne disease outbreaks are high priorities for CDC and will require additional capacity at state and local levels for tracking, diagnosing, and reporting cases; controlling vectors; and preventing transmission.

The figure above is a map of the United States showing reported cases of tickborne disease in U.S. states and territories during 2004–2016.

Reported cases* of tickborne disease — U.S. states and territories, 2004–2016

 

The figure above is a map of the United States showing reported cases of mosquitoborne disease in U.S. states and territories during 2004–2016.

Reported cases* of mosquitoborne disease — U.S. states and territories, 2004–2016

 

The figure above is a bar chart showing reported nationally notifiable mosquitoborne, tickborne, and fleaborne disease cases in U.S. states and territories during 2004–2016.

Reported nationally notifiable mosquitoborne,* tickborne, and fleaborne disease cases — U.S. states and territories, 2004–2016


The number of reported cases of disease from mosquito, tick, and flea bites has more than tripled in the USA (2004-2016)

CDC

More cases in the US (2004-2016)

  • The number of reported cases of disease from mosquito, tick, and flea bites has more than tripled.
  • More than 640,000 cases of these diseases were reported from 2004 to 2016.
  • Disease cases from ticks have doubled.
  • Mosquito-borne disease epidemics happen more frequently.

More germs (2004-2016)

  • Chikungunya and Zika viruses caused outbreaks in the US for the first time.
  • Seven new tickborne germs can infect people in the US.

More people at risk

  • Commerce moves mosquitoes, ticks, and fleas around the world.
  • Infected travelers can introduce and spread germs across the world.
  • Mosquitoes and ticks move germs into new areas of the US, causing more people to be at risk.

The US is not fully prepared

  • Local and state health departments and vector control organizations face increasing demands to respond to these threats.
  • More than 80% of vector control organizations report needing improvement in 1 or more of 5 core competencies, such as testing for pesticide resistance.
  • More proven and publicly accepted mosquito and tick control methods are needed to prevent and control these diseases.

Vector-Borne Diseases Reported by States to CDC

Photo of mosquito

Mosquito-borne diseases

  • California serogroup viruses
  • Chikungunya virus
  • Dengue viruses
  • Eastern equine encephalitis virus
  • Malaria plasmodium
  • St. Louis encephalitis virus
  • West Nile virus
  • Yellow fever virus
  • Zika virus

 

Photo of Tick

Tickborne diseases

  • Anaplasmosis/ehrlichiosis
  • Babesiosis
  • Lyme disease
  • Powassan virus
  • Spotted fever rickettsiosis
  • Tularemia

 

Photo of Flea

Fleaborne disease

  • Plague

For more information: https://wwwn.cdc.gov/nndss/

Graphic: Disease cases from infected mosquitoes, ticks, and fleas have tripled in 13 years

Graphic: Disease cases from mosquitoes (2004-2016, reported)

Graphic: Disease cases from ticks (2004-2016, reported)


Chikungunya – Mombasa, Kenya

WHO

Disease outbreak news
27 February 2018

From mid-December 2017 through 3 February 2018, the Ministry of Health (MoH) of Kenya reported 453 cases, including 32 laboratory-confirmed cases and 421 suspected cases, of chikungunya from Mombasa County.

The outbreak was detected due to an increase in the number of patients presenting to health facilities in Mombasa Country with high grade fever, joint pain and general body weakness.

On 13 December 2017, eight blood samples from two private hospitals were collected and submitted to the Kenya Medical Research Institute (KEMRI) arbovirus laboratory in Nairobi. Of the eight samples tested, four were positive for chikungunya and four were positive for dengue by polymerase chain reaction (PCR) analysis. On 4 January 2018, blood samples were collected from 32 additional suspected cases and sent to the KEMRI laboratory. Of these, 27 samples tested positive and five samples tested negative for chikungunya by PCR.

A large proportion, approximately 70%, of cases reported severe joint pain and high grade fever. The scale of this outbreak has likely been underestimated given the under-reporting of cases and low levels of health-seeking behaviors among the affected population. The large mosquito breeding sites in affected areas and inadequate vector control mechanisms also represent major propagating factors.

Based on reports from peripheral health facilities, the outbreak has spread to the six sub-counties (Changamwe, Jomvu, Kisauni, Likoni, Mvita and Nyali) of Mombasa and one in Kilifi: with the majority of suspected cases reported from Mvita and Likoni in Mombasa.

Public health response

The following public health measures are ongoing:

  • WHO is supporting the MoH in drafting a chikungunya response plan for Mombasa County;
  • WHO is supporting the National Emergency Operations Centre with analyzing data and developing situation reports;
  • Vector control activities, including eliminating mosquito breeding sites, fogging and indoor residual spraying;
  • Chikungunya outbreak alert and fact sheet were issued to all health facilities, including private hospitals, in the affected areas;
  • Information, education and communication materials were developed and distributed to households by the community health volunteers.

WHO risk assessment

Based on the available information, the risk of continued transmission in affected areas and spread to unaffected areas cannot be ruled out.

Mombasa is the second largest city in Kenya with approximately 1.2 million inhabitants. The city has a rapidly growing population, and some areas experience overcrowding, numerous open dump sites, inadequate drainage, stagnant water and ample breeding sites for mosquitoes. These factors make Mombasa particularly vulnerable to vector-borne diseases. Mombasa County is also a popular tourist destination and a sub-regional transportation hub with connections to Rwanda, Tanzania and Ethiopia. This is the first time that active circulation of chikungunya has been laboratory confirmed in Mombasa. Further sequencing of the circulating virus is therefore needed to better assess the current epidemiologic situation.

WHO advice

Personal protection

Basic precautions should be taken by people living in and travelling to Mombasa County. These precautions include the use of repellents, wearing long sleeves and pants and ensuring rooms are fitted with screens to prevent mosquitoes from entering.

Clothing which minimizes skin exposure to the day-biting mosquitoes is advised. Repellents can be applied to exposed skin or to clothing in strict accordance with product label instructions. Repellents should contain DEET (N, N-diethyl-3-methylbenzamide), IR3535 (3-[N-acetyl-N-butyl]-aminopropionic acid ethyl ester) or icaridin (1-piperidinecarboxylic acid, 2-(2-hydroxyethyl)-1-methylpropylester). The use of air conditioning, window screens, mosquito coils or other insecticide vaporizers as well as sleeping under a mosquito bed net even during the day are recommended to prevent biting by mosquitos indoors.

Vector control

Prevention and control relies heavily on reducing the number of the natural and artificial water-filled container habitats that act as mosquito breeding sites. This requires mobilizing the affected communities, strengthening entomological monitoring to assess impact of control measures and implementing additional controls as needed to avoid misconceptions and false rumors.

WHO advises against the application of any travel or trade restrictions on Kenya based on the information currently available.

For more information, please see the link below:


Italy’s chikungunya outbreak has expanded to a second region, and the total number of suspected or confirmed cases has climbed to 298

ECDC

“…..Italy is currently experiencing four clusters of autochthonous chikungunya cases in the cities of Anzio, Latina and Rome in the Lazio region, and the city of Guardavalle Marina in the Calabria region. Autochthonous transmission of mosquito-borne infections is not unexpected in areas where Aedes albopictus mosquitoes are established and at a time when environmental conditions are favouring mosquito abundance and activity.

This is the second time that Italy is facing an outbreak of autochthonous chikungunya, following an outbreak in the Emilia-Romagna region in 2007. Within the European Union, apart from Italy, only France reported outbreaks of autochthonous cases in the past, i.e. in 2010, 2014 and 2017. Autochthonous chikungunya transmission is estimated to have started in Anzio in early-/mid-June 2017 or earlier. Subsequently, autochthonous transmission was detected in Rome and Latina, and more recently in Guardavalle Marina.

The likelihood of further spread within Italy is still moderate, with suitable but less favourable conditions for vector activity in the coming weeks. In the areas already affected, it is likely that more cases will be identified in the near future. ….”


PAHO: 37,000 new chikungunya cases in the Americas

Countries with current or previous local transmission of chikungunya virus, listed in below data table

CDC:  “…Since the Americas outbreak began in 2013 on the Caribbean island of St. Martin, the Americas region has reported 2,569,438 cases.

Map of the United States showing states reporting travel-associated chikungunya virus disease cases, including, Alaska, California, Colorado, Georgia, Illinois, Kansas, Massachusetts, Michigan, Nebraska, New Jersey, New York, Ohio, Pennsylvania, Texas, Virginia, Washington, and Wisconsin

Laboratory-confirmed chikungunya virus disease cases reported to ArboNET by state or territory — United States, 2017 (as of September 19, 2017)

Travel-associated cases
No. (%)
Locally-transmitted cases
No. (%)
State  (N=46) (N=0)
Alaska 1 (2) 0 (0)
California 9 (20) 0 (0)
Colorado 1 (2) 0 (0)
Georgia 2 (4) 0 (0)
Illinois 1 (2) 0 (0)
Kansas 1 (2) 0 (0)
Massachusetts 3 (7) 0 (0)
Michigan 2 (4) 0 (0)
Nebraska 2 (4) 0 (0)
New Jersey 2 (4) 0 (0)
New York 7 (15) 0 (0)
Ohio 3 (7) 0 (0)
Pennsylvania 1 (2) 0 (0)
Texas 7 (15) 0 (0)
Virginia 1 (2) 0 (0)
Washington 1 (2) 0 (0)
Wisconsin 2 (4) 0 (0)
Territories (N=0) (N=32)
Puerto Rico 0 (0) 32 (100)

As of 14 September, fourteen autochthonous confirmed cases of chikungunya have been diagnosed in Italy, six in Rome and eight in the coastal area of Anzio .

WHO

Chikungunya – Italy

Disease outbreak news
15 September 2017

As of 14 September, fourteen autochthonous confirmed cases of chikungunya have been diagnosed in Italy, six in Rome and eight in the coastal area of Anzio (Lazio Region). There are additional cases being investigated.

Collegamento al siti tematico Vaccinazioni. Apre una nuova pagina.

The date of onset of symptoms of the first case was on 5 August 2017. The dates of onset of the latest cases are between 25 August and 7 September 2017.

Public health response

The following public health measures described in the Italian National Chikungunya Surveillance and Response Plan are implemented:

  • Disinfestation and vector control measures in the Anzio and Rome areas;
  • Communication to the population about chikungunya and information on protection against mosquito bites. Ministry of Health’s website has pages about chikungunya which can be found here;
  • Measures to prevent transmission through blood transfusion;
  • Information and guidelines for health care practitioners to manage patients.

The National Health Institute (Istituto Superiore di Sanità) issued a public statement on 8 September 2017 concerning the outbreak.

WHO risk assessment

There is a risk for further transmission. This is due to:

  • Aedes albopictus being established throughout the Mediterranean basin;
  • this vector having demonstrated the capacity to sustain outbreaks of chikungunya in the past; and
  • the area of the current case being highly populated and touristic particularly in summer months.

The disease mostly occurs in Africa, Asia, Americas and the Indian subcontinent. In 2007, transmission was reported for the first time in Europe, in the Emilia Romagna region of north-eastern Italy. There were 217 laboratory confirmed cases during this outbreak and it demonstrated that mosquito-borne outbreaks by Aedes albopictus are possible in Europe. Currently, there is another ongoing autochthonous outbreak in Var Department that started in early August 2017.

WHO advice

Personal protection

Basic precautions should be taken by people within and travelling to this area of Italy. These include wearing long sleeves and pants, use of repellents, and ensuring rooms are fitted with screens to prevent mosquitoes from entering.

Clothing which minimizes skin exposure to the day-biting vectors is advised. Repellents can be applied to exposed skin or to clothing in strict accordance with product label instructions. Repellents should contain DEET, IR3535, or Icaridin. People should sleep under a mosquito bed net and use air conditioning or window screens to prevent mosquito bites. Mosquito coils or other insecticide vaporizers may also reduce indoor biting.

Vector control

The Aedes albopictus species thrives in a wide range of water-filled containers, including tree-holes and rock pools, in addition to artificial containers such as unused vehicle tires, saucers beneath plant pots, rain water barrels and cisterns, and catch basins.

Prevention and control relies heavily on reducing the number of these natural and artificial water-filled container habitats that support breeding of the mosquitoes. This requires mobilization of affected communities, and strengthening monitoring of the vector mosquito. During outbreaks, indoor space spraying with insecticides may be performed to kill flying mosquitoes along with killing the immature larvae in water-filled containers through source reduction.

About chikungunya

Chikungunya is a viral disease transmitted to humans by infected mosquitoes. It causes fever and severe joint pain. Other symptoms include muscle pain, headache, nausea, fatigue and rash. Joint pain is often debilitating and can vary in duration. Hence the virus can cause acute, subacute or chronic disease. There is no cure for the disease and treatment is focused on relieving the symptoms. The proximity of mosquito breeding sites to human habitation is a significant risk factor for chikungunya.


Italy: Three people have been diagnosed with mosquito-borne chikungunya fever in Anzio

BBC

 


Disease-carrying mosquitoes may be moving into new ecological niches with greater frequency.

NY Times

“…..The website, ProMED mail, has carried more than a dozen such reports since June, all involving mosquito species known to transmit human diseases.

Most reports have concerned the United States, where, for example, Aedes aegypti — the yellow fever mosquito, which also spreads Zika, dengue and chikungunya — has been turning up in counties in California and Nevada where it had never, or only rarely, been seen.

Other reports have noted mosquito species found for the first time on certain South Pacific islands, or in parts of Europe where harsh winters previously kept them at bay…..”


Local transmission of chikungunya has been confirmed in south eastern France

WHO 

Chikungunya – France

Disease outbreak news
25 August 2017

Local transmission of chikungunya has been confirmed in south eastern France, with four cases diagnosed in the Provence-Alpes-Côte d’Azur region as of 23 August 2017. In addition, there is one probable case, and eight suspected cases.

The date of onset of symptoms of the first confirmed case was 2 August 2017. All four confirmed and one probable case had symptom onset during the period, 2 to 17 August 2017.

All 13 patients (four confirmed, one probable and eight suspected) are aged between 3 to 77 years old, and they all are inhabitants of the same district of the commune of Cannet des Maures in Var department, as announced by the Regional Health Authority (ARS).

These are not the first reported cases of chikungunya in France. Two autochthonous cases were recorded in the same area in 2010 and 11 cases in Montpellier in 2014. Nevertheless, chikungunya is an emerging disease in southern Europe, and an outbreak is considered unexpected. The vector Aedes albopictus is establishing itself in large part of the Mediterranean basin and beyond.

Public health response by French national authorities

According to the national response plan, the following actions are being taken:

  • Vector control measures around the house and working locations of the patients.
  • Blood testing of any suspected case.
  • Risk communication as coordinated by the regional health agency.

The entomological investigation on 10 August 2017 confirmed the presence of Aedes albopictus in the affected area. In addition, blood collection has been postponed in the affected area.

WHO risk assessment

There is a potential risk for international spread.

This is based on:

  • Aedes albopictus being established throughout the Mediterranean basin.
  • This vector having demonstrated capacity to sustain outbreaks of chikungunya in the past.
  • The currently affected area being highly touristic particularly in summer months and close to the border with Italy (with established populations of Aedes albopictus).

Chikungunya transmission was reported for the first time in Europe in 2007, in an outbreak in north eastern Italy. There were 205 cases recorded during that outbreak and it confirmed that mosquito-borne outbreaks by Aedes albopictus are plausible in Europe.

Asymptomatic infection with chikungunya can go undetected and therefore also increases the risk for spread. Additionally, excess rainfall in the affected areas in the coming months, could trigger further increase in transmission as observed in 2014.

WHO advice

Prevention of mosquito bites

Basic precautions should be taken by people within and travelling to this area of France to prevent mosquito bites during the day. These include the use of repellents, wearing long sleeves and pants, and ensuring rooms are fitted with screens to prevent mosquitoes from entering.

Repellents can be applied to exposed skin or to clothing in strict accordance with product label instructions. Repellents should contain DEET, IR3535, or Icaridin. People should sleep under a mosquito bed net and use air conditioning or window screens to prevent mosquito bites. Mosquito coils or other insecticide vaporizers may also reduce indoor biting.

Vector control

Aedes albopictus thrives in a wide range of water-filled containers, including tree-holes and rock pools, in addition to artificial containers such as unused vehicle tires, saucers beneath plant pots, rain water barrels and cisterns, and catch basins.

Prevention and control relies heavily on reducing the number of these water-filled container habitats that support breeding of the mosquitoes. During outbreaks, indoor space spraying with insecticides may be used to kill flying mosquitoes along with measures to kill the larvae.

WHO also encourages strengthening monitoring of the mosquitoes and implementation of additional control as and when needed through arboviral disease networks within Europe. Awareness should also be raised about re-emerging vector-borne diseases among physicians and through social mobilization efforts in affected communities.

Blood safety

National blood services and/or authorities should monitor epidemiological information and strengthen vigilance to identify any potential transmission of chikungunya virus via transfusion. Appropriate safety precautions in line with measures taken to prevent other mosquito-borne disease transmission via transfusion should be taken based on the epidemiological situation and risk assessment.


Categories

Recent Posts

Archives

Admin