Global & Disaster Medicine

Archive for the ‘Yellow Fever’ Category

Nigeria: As of Nov 25, 2018, a total of 3,510 suspected YF cases, including 74 deaths (the case-fatality rate is 2.1%).

Locator Map for Nigeria

Nigeria

A yellow fever outbreak has been active in Nigeria since September 2017, with all 36 States plus FCT reporting at least one suspected case. 

A multi-agency national Emergency Operations Centre is coordinating the national response. 

A new cluster of suspected cases of yellow fever was reported in Edo state on 22 November 2018. Since 9 September 2018, a total of 36 suspected cases, 2 presumptive positives including 8 deaths have been recorded. 

Thirteen additional samples from Edo state were tested at a Nigeria laboratory outside the yellow fever laboratory network and nine samples were reported as positive. Aliquots of these samples have been sent to the World Health Organisation yellow fever reference laboratory, IP Dakar for confirmatory testing. 

A National Rapid Response Team has been deployed to Edo State and is working with the Edo State Ministry of Health and the World Health Organisation and other partners. 

The Rapid Response Team’s focus has been finding cases, sensitization of health workers and communities, entomological surveillance etc in order to define an appropriate response. 

A planned yellow fever preventive mass vaccination campaign targeting 20,461,805 persons in six states (Borno, Kebbi, Niger, Plateau, Sokoto and the FCT) commenced on 22nd November 2018.


WHO is releasing more than a million doses of yellow fever vaccine from its emergency stockpile after the deadly mosquito-borne disease killed 10 people in southwestern Ethiopia

Reuters

https://www.youtube.com/watch?v=86w2i9b2Bf4

 


Yellow fever earned New Orleans the nickname “Necropolis” — city of the dead.

NPR

How Yellow Fever Turned New Orleans Into The ‘City Of The Dead’

“…..Yellow fever didn’t just kill. It created an entire social structure based on who had survived the virus, who was likely to survive it and who was not long for this world. And that structure had everything to do with immigration and slavery….”

Yellow fever virus has three transmission cycles: jungle (sylvatic), intermediate (savannah), and urban.

 


Aedes albopictus, a vector for Zika, Dengue, and Yellow Fever, has been spotted in Eindhoven, Netherlands

The Dutch News

 


The mosquito, Aedes albopictus, that is responsible for transmitting Zika virus and yellow fever is closing in on Portugal

The Portugal News

 


8/13/1878: Kate Bionda, a restaurant owner, becomes first to die of yellow fever in Memphis, Tennessee (pop. 50,000)

History Channel

“……An average of 200 people died every day through September. There were corpses everywhere and near continual ringing of funeral bells. Half of the city’s doctors died.

The epidemic ended with the first frost in October…..”

Memphis, Tennessee

The image was taken by the Expedition 41 crew.

 


Sterile Insect Technique on Aedes aegypti mosquitoes

CSIRO

In an international partnership between CSIRO, Verily and James Cook University, scientists used specialised technology to release millions of sterilised male Aedes aegypti mosquitoes across the Cassowary Coast in Queensland in a bid to combat the global pest.

CSIRO Director of Health and Biosecurity Dr Rob Grenfell said the results were a major win in the fight against diseases-spreading mosquitoes.

“The invasive Aedes aegypti mosquito is one of the world’s most dangerous pests, capable of spreading devastating diseases like dengue, Zika and chikungunya and responsible for infecting millions of people with disease around the world each year,” Dr Grenfell said.

“Increased urbanisation and warming temperatures mean that more people are at risk, as these mosquitoes which were once relegated to areas near the equator forge past previous climatic boundaries.

“Although the majority of mosquitoes don’t spread diseases, the three mostly deadly types the Aedes, Anopheles and Culex are found almost all over the world and are responsible for around 17 per cent of infectious disease transmissions globally.”

From November 2017 to June this year, non-biting male Aedes aegypti mosquitoes sterilised with the natural bacteria Wolbachia were released in trial zones along the Cassowary Coast in North Queensland.

They mated with local female mosquitoes, resulting in eggs that did not hatch and a significant reduction of their population.

“Our heartfelt thanks goes out to the Innisfail community who literally opened their doors to our team, letting us install mosquito traps around their homes and businesses – we couldn’t have done this without your support,” Dr Grenfell said.

The process, known as the Sterile Insect Technique, has been successfully used since the 1950s but the challenge in making it work for mosquitoes like the Aedes aegypti has been rearing enough mosquitoes, removing biting females, identifying the males and then releasing the huge numbers needed to suppress a population.

To address this challenge, Verily, an affiliate of Alphabet Inc, developed a mosquito rearing and sex sorting and release technology as part of its global Debug project.

“We’re very pleased to see strong suppression of these dangerous biting female Aedes aegypti mosquitoes,” Verily’s Nigel Snoad said.

“We are particularly thankful to the people of Innisfail for their strong support, which has been incredible.

“We came to Innisfail with CSIRO and JCU to see how this approach worked in a tropical environment where these mosquitoes thrive, and to learn what it was like to operate our technology with research collaborators as we work together to find new ways to tackle these dangerous mosquitoes.”

Scientists compared the number of Aedes aegypti mosquitoes trapped in release sites and control zones to monitor and track populations.

The millions of mosquitoes needed for the trial were reared at James Cook University in Cairns.

To produce the three million male mosquitoes needed for the trial, researchers at James Cook University (JCU) in Cairns set out to raise almost 20 million Aedes aegypti.

“We allowed for the possibility of deaths during the process, as well as the need to sift out the female half of the population,” Dr Kyran Staunton from James Cook University said.

“Verily’s technology enabled us to do the sex sorting faster and with much higher accuracy.

“We learnt a lot from collaborating on this first tropical trial and we’re excited to see how this approach might be applied in other regions where Aedes aegypti poses a threat to life and health.”

“The health of our nation is paramount as we help Australia achieve its vision to become one of the healthiest nations on earth,” CSIRO Chief Executive Dr Larry Marshall said.

“By enabling industry partners like Verily to leverage the world-leading health capability we have built in CSIRO we can deliver this moonshot and tackle some of the world’s most wicked challenges with science.”


New study: Even small doses of the yellow fever vaccine are likely to offer protection against the virus for up to 8 years after vaccination.

Vaccine

Volume 36, Issue 28, 27 June 2018, Pages 4112-4117
Vaccine
Duration of post-vaccination immunity to yellow fever in volunteers eight years after a dose-response study
“…..At least 80% of the subjects who had seroconverted after yellow fever vaccination with doses from 27,476 IU down to 31 IU showed seropositivity comparable to that of the full dose after eight years. …….”

U.S. trends in occurrence of nationally reportable vectorborne diseases during 2004–2016.

CDC-MMWR

Rosenberg R, Lindsey NP, Fischer M, et al. Vital Signs: Trends in Reported Vectorborne Disease Cases — United States and Territories, 2004–2016. MMWR Morb Mortal Wkly Rep. ePub: 1 May 2018. DOI: http://dx.doi.org/10.15585/mmwr.mm6717e1.

Key Points

•A total of 642,602 cases of 16 diseases caused by bacteria, viruses, or parasites transmitted through the bites of mosquitoes, ticks, or fleas were reported to CDC during 2004–2016. Indications are that cases were substantially underreported.

•Tickborne diseases more than doubled in 13 years and were 77% of all vectorborne disease reports. Lyme disease accounted for 82% of all tickborne cases, but spotted fever rickettsioses, babesiosis, and anaplasmosis/ehrlichiosis cases also increased.

•Tickborne disease cases predominated in the eastern continental United States and areas along the Pacific coast. Mosquitoborne dengue, chikungunya, and Zika viruses were almost exclusively transmitted in Puerto Rico, American Samoa, and the U.S. Virgin Islands, where they were periodically epidemic. West Nile virus, also occasionally epidemic, was widely distributed in the continental United States, where it is the major mosquitoborne disease.

•During 2004–2016, nine vectorborne human diseases were reported for the first time from the United States and U.S. territories. The discovery or introduction of novel vectorborne agents will be a continuing threat.

•Vectorborne diseases have been difficult to prevent and control. A Food and Drug Administration–-approved vaccine is available only for yellow fever virus. Many of the vectorborne diseases, including Lyme disease and West Nile virus, have animal reservoirs. Insecticide resistance is widespread and increasing.

•Preventing and responding to vectorborne disease outbreaks are high priorities for CDC and will require additional capacity at state and local levels for tracking, diagnosing, and reporting cases; controlling vectors; and preventing transmission.

The figure above is a map of the United States showing reported cases of tickborne disease in U.S. states and territories during 2004–2016.

Reported cases* of tickborne disease — U.S. states and territories, 2004–2016

 

The figure above is a map of the United States showing reported cases of mosquitoborne disease in U.S. states and territories during 2004–2016.

Reported cases* of mosquitoborne disease — U.S. states and territories, 2004–2016

 

The figure above is a bar chart showing reported nationally notifiable mosquitoborne, tickborne, and fleaborne disease cases in U.S. states and territories during 2004–2016.

Reported nationally notifiable mosquitoborne,* tickborne, and fleaborne disease cases — U.S. states and territories, 2004–2016


The number of reported cases of disease from mosquito, tick, and flea bites has more than tripled in the USA (2004-2016)

CDC

More cases in the US (2004-2016)

  • The number of reported cases of disease from mosquito, tick, and flea bites has more than tripled.
  • More than 640,000 cases of these diseases were reported from 2004 to 2016.
  • Disease cases from ticks have doubled.
  • Mosquito-borne disease epidemics happen more frequently.

More germs (2004-2016)

  • Chikungunya and Zika viruses caused outbreaks in the US for the first time.
  • Seven new tickborne germs can infect people in the US.

More people at risk

  • Commerce moves mosquitoes, ticks, and fleas around the world.
  • Infected travelers can introduce and spread germs across the world.
  • Mosquitoes and ticks move germs into new areas of the US, causing more people to be at risk.

The US is not fully prepared

  • Local and state health departments and vector control organizations face increasing demands to respond to these threats.
  • More than 80% of vector control organizations report needing improvement in 1 or more of 5 core competencies, such as testing for pesticide resistance.
  • More proven and publicly accepted mosquito and tick control methods are needed to prevent and control these diseases.

Vector-Borne Diseases Reported by States to CDC

Photo of mosquito

Mosquito-borne diseases

  • California serogroup viruses
  • Chikungunya virus
  • Dengue viruses
  • Eastern equine encephalitis virus
  • Malaria plasmodium
  • St. Louis encephalitis virus
  • West Nile virus
  • Yellow fever virus
  • Zika virus

 

Photo of Tick

Tickborne diseases

  • Anaplasmosis/ehrlichiosis
  • Babesiosis
  • Lyme disease
  • Powassan virus
  • Spotted fever rickettsiosis
  • Tularemia

 

Photo of Flea

Fleaborne disease

  • Plague

For more information: https://wwwn.cdc.gov/nndss/

Graphic: Disease cases from infected mosquitoes, ticks, and fleas have tripled in 13 years

Graphic: Disease cases from mosquitoes (2004-2016, reported)

Graphic: Disease cases from ticks (2004-2016, reported)


Categories

Recent Posts

Archives

Admin